Archives

  • 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2020-03
  • 2020-07
  • 2020-08
  • br Irizarry RA Hobbs B

    2020-08-18


    [29] Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonel-lis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4:249–64.
    [30] Stransky N, Ghandi M, Kryukov GV, Garraway LA, Lehár J, Liu M, Sonkin D, Kauffmann A, Venkatesan K, Edelman EJ, Riester M, Barretina J, Caponigro G, Schlegel R, Sellers WR, Stegmeier F, Morrissey M, Amzallag A, Pruteanu-Malinici I, Haber DA, Ramaswamy S, Benes CH, Menden MP, Iorio F, Stratton MR, McDermott U, Garnett MJ, Saez-Rodriguez J. Pharmacogenomic agreement between two cancer cell line data sets. Nature 2015;528:84–7.
    [32] Bairoch A. The Cellosaurus: a cell line knowledge resource.
    Available at: http://web.expasy.org/cellosaurus/ Accessed 25 April 2017.
    [33] Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B-Methodol 1995;57:289–300.
    [36] Rajapakse VN, Luna A, Yamade M, Loman L, Varma S, Sun-shine M, Iorio F, Sousa FG, Elloumi F, Aladjem MI, Thomas A, Sander C, Kohn KW, Benes CH, Garnett M, Reinhold WC, Pommier Y. CellMinerCDB for integrative cross-database ge-nomics and pharmacogenomics analyses of cancer cell lines. iScience 2018;10:247–64.
    [40] Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price EV, Gill S, Javaid S, Coletti ME, Jones VL, Body-combe NE, Soule CK, Alexander B, Li A, Montgomery P, Kotz JD, Hon CS, Munoz B, Liefeld T, Dancik V, Haber DA, Clish CB, Bittker JA, Palmer M, Wagner BK, Clemons PA, Shamji AF, Schreiber SL. Correlating chemical sensitivity and basal gene MG132 reveals mechanism of action. Nat Chem Biol 2016;12:109–16.
    [41] Cancer Therapeutics Response Portal v. 2.0 Available at: https: //portals.broadinstitute.org/ctrp/ Accessed 5 July 2018.
    [47] Selleck Chemicals online resource. Available at: http://www. selleckchem.com Accessed 5 July 2018.
    [49] Aphios Research Chemicals online information. Available
    at: https://www.aphios.com/products/research-chemicals/ cyclopamine.html Accessed 5 July 2018.
    [50] AstraZeneca Clinical Compound Bank. Available at: https: //openinnovation.astrazeneca.com/clinical-compound-bank. html Accessed 5 July 2018.
    [51] Zhou J, Zheng J, Zhang X, Zhao J, Zhu Y, Shen Q, Wang Y, Sun K, Zhang Z, Pan Z, Shen Y, Zhou J. Crizotinib in patients with anaplastic lymphoma kinase-positive advanced non-small cell lung cancer versus chemotherapy as a first-line treatment. BMC Cancer 2018;18:10.
    [52] Heretsch P, Tzagkaroulaki L, Giannis A. Cyclopamine and hedgehog signaling: chemistry, biology, medical perspectives. Angew Chem Int Ed Engl 2010;49:3418–27.
    [53] Geyer R, Zlateva T, Lakshmikuttyamma A, Sheridan DP, De-Coteau JF. GNF-2, an allosteric BCR-ABL inhibitor, identifies a novel myristoylation-mediated mechanism regulating the abil-ity of BCR-ABL to activate HCK and IGF-1 signaling. Blood 2009;114:40.
    [54] Oakman C, Pestrin M, Zafarana E, Cantisani E, Di Leo A. Role of lapatinib in the first-line treatment of patients with metastatic breast cancer. Cancer Manag Res 2010;2:13–25.
    [55] Spector NL, Xia W, Burris H 3rd, Hurwitz H, Dees EC, Dowlati A, O’Neil B, Overmoyer B, Marcom PK, Blackwell KL, Smith DA, Koch KM, Stead A, Mangum S, Ellis MJ, Liu L, Man AK, Bremer TM, Harris J, Bacus S. Study of the biologic ef-fects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyro-sine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J Clin Oncol 2005;23:2502–12.
    [58] Verkaar F, van der Doelen AA, Smits JF, Blankesteijn WM, Zaman GJ. Inhibition of Wnt/beta-catenin signaling by p38 MAP kinase inhibitors is explained by cross-reactivity with casein kinase Iδ/ε. Chem Biol 2011;18:485–94.
    [59] James LI, Barsyte-Lovejoy D, Zhong N, Krichevsky L, Kor-boukh VK, Herold JM, MacNevin CJ, Norris JL, Sagum CA, Tempel W, Marcon E, Guo H, Gao C, Huang XP, Duan S, Emili A, Greenblatt JF, Kireev DB, Jin MG132 J, Janzen WP, Brown PJ, Bedford MT, Arrowsmith CH, Frye SV. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nat Chem Biol 2013;9:184–91.
    [60] Gediya LK, Khandelwal A, Patel J, Belosay A, Sabnis G, Mehta J, Purushottamachar P, Njar VC. Design, synthesis, and evaluation of novel mutual prodrugs (hybrid drugs) of all– trans-retinoic acid and histone deacetylase inhibitors with en-hanced anticancer activities in breast and prostate cancer cells in vitro. J Med Chem 2008;51:3895–904.
    [61] Saha SK, Gordan JD, Kleinstiver BP, Vu P, Najem MS, Yeo JC, Shi L, Kato Y, Levin RS, Webber JT, Damon LJ, Egan RK, Greninger P, McDermott U, Garnett MJ, Jenk-ins RL, Rieger-Christ KM, Sullivan TB, Hezel AF, Liss AS, Mizukami Y, Goyal L, Ferrone CR, Zhu AX, Joung JK, Shokat KM, Benes CH, Bardeesy N. Isocitrate dehydroge-nase mutations confer dasatinib hypersensitivity and SRC de-pendence in intrahepatic cholangiocarcinoma. Cancer Discov 2016;6:727–39.